
 ADTs & Templates

Tiziana Ligorio
Hunter College of The City University of New York

1

Today’s Plan

Recap

ADTs

Templates

2

Recap

C++ Review
 Default arguments
 Overloading functions
 Friend functions
 Operator overloading
 Enum

Inheritance
 Overriding
 Protected
 Inheritance rules
 Constructors / Destructors call order

6

Abstract Data Type

7

Data and Abstraction

Operations on data are central to most solutions

Think abstractly about data and its management

Typically need to
 Organize data
 Add data
 Remove data
 Retrieve
 Ask questions about data
 Modify data

8

Abstract Data Type

A collection of data (container) and a set of operations on the
data

Carefully specify an ADT’s operations before you implement
them

In C++ member variables and member functions implement the
Abstract Data Type

Design

Implementation

9

OOP

10

class someADT  
{  

access_specifier // can be private, public or protected  
data_members // variables used in class  
member_functions // methods to access data members

}; // end someClass

Class

Design

Implementation

someADT.hpp

someADT.cpp

11

Designing an ADT
What data does the problem require?
 Data
 Organization

What operations are necessary on that data?
 Initialize
 Display
 Calculations
 Add
 Remove
 Change

12

Throughout the semester we will consider several
ADTs

Let’s start from the simplest possible!

13

Design the Bag ADT

Contains things

Container or Collection of Objects

Objects are of same type

No particular order

Can contain duplicates

14

Design Step 1

Identify Behavior - i.e. Bag Operations:
1.
2.
3.
4.
5.
6.
…

15

Design step 1: Identify Behaviors
Bag Operations:

1.Add an object to the bag

2.Remove an occurrence of a specific object form the bag if it’s there

3.Get the number of items currently in the bag

4.Check if the bag is empty

5.Remove all objects from the bag

6.Count the number of times a certain object is found in the bag

7.Test whether the bag contains a particular object

8.Look at all the objects that are in the bag

16

Specify Data and Operations

//Task: reports the current number of objects in Bag  
//Input: none  
//Output: the number of objects currently in Bag 
getCurrentSize()  
 
//Task: checks whether Bag is empty  
//Input: none  
//Output: true or false according to whether Bag is empty 
isEmpty()  
 
//Task: adds a given object to the Bag  
//Input: new_entry is an object  
//Output: true or false according to whether addition succeeds 
add(new_entry)  
 
//Task: removes an object from the Bag  
//Input: an_entry is an object  
//Output: true or false according to whether removal succeeds 
remove(an_entry)

Pseudocode

17

Specify Data and Operations

//Task: removes all objects from the Bag  
//Input: none  
//Output: none  
clear()  
 
//Task: counts the number of times an object occurs in Bag  
//Input: an_entry is an object  
//Output: the int number of times an_entry occurs in Bag 
getFrequencyOf(an_entry)  
 
//Task: checks whether Bag contains a particular object  
//Input: an_entry is an object  
//Output: true of false according to whether an_entry is in Bag 
contains(an_entry)  
 
//Task: gets all objects in Bag  
//Input: none  
//Output: a vector containing all objects currently in Bag 
toVector()

18

What’s next?
Finalize the interface for your ADT => write the actual code

… but we have a problem!!!

We said Bag contains objects of same type
 What type?

To specify member function prototype we need to know

 //Task: adds a given object to the Bag  

//Input: new_entry is an object  
//Output: true or false according to whether addition succeeds 
bool add(type??? new_entry);

19

Templates

20

Motivation

We don’t want to write a new Bag ADT for each type
of object we might want to store

Want to parameterize over some arbitrary type

Useful when implementing an ADT without locking
the actual type

An example are STL containers
 e.g. vector<type>

21

Vector
A container similar to a one-dimensional array

Different implementation and operations

STL (C++ Standard Template Library)

#include <vector>  
…  
std::vector<type> vector_name;

e.g.

std::vector<string> student_names;

22

Declaration

#ifndef BAG_H_  
#define BAG_H_  
template<class T> // this is a template definition  
class Bag  
{

//class declaration here

};  
#include “Bag.cpp”  
#endif //BAG_H_

Explained next

23

Declaration

#ifndef BAG_H_  
#define BAG_H_  
template<class T> // this is a template definition  
class Bag  
{

//class declaration here

};  
#include “Bag.cpp”  
#endif //BAG_H_

Explained next

24

The book uses ItemType
I’m going to change it to T which is often used

class here could be replaced by typename

for this course we will use class

Implementation

#include “Bag.hpp”  
 
template<class T>  
bool Bag<T>::add(const T& new_entry){  

//implementation here  
}

//more member function implementation here

25

Instantiation

#include “Bag.hpp”

int main()  
{

Bag<string> string_bag;  
Bag<int> int_bag;  
Bag<someObject> some_object_bag;

std::vector<int> numbers;  
 //stuff here

return 0;

}; // end main

26

Separate Compilation

Include .hpp Include .hpp Include .hpp main

27

Linking with Templates

Include .hpp Include .hpp Include .hpp

template<>

main

28

Linking with Templates
Always #include the .cpp file in the .hpp file

#ifndef MYTEMPLATE_H_  
#define MYTEMPLATE_H_  
template<class T>  
class MyTemplate  
{

//stuff here

} //end MyTemplate  
#include “MyTemplate.cpp”  
#endif //MYTEMPLATE_H_  
 
 
 
 
 
 

29

Always #include the .cpp file in the .hpp file

#ifndef MYTEMPLATE_H_  
#define MYTEMPLATE_H_  
template<class T>  
class MyTemplate  
{

//stuff here

} //end MyTemplate  
#include “MyTemplate.cpp”  
#endif //MYTEMPLATE_H_  
 
 
 
 
 
 

Linking with Templates

30

IMPORTANT

Make sure you understand
and don’t have problems
with multi-file compilation
using templates

Linking with Templates
Always #include the .cpp file in the .hpp file

#ifndef MYTEMPLATE_H_  
#define MYTEMPLATE_H_  
template<class T>  
class MyTemplate  
{

//stuff here

} //end MyTemplate  
#include “MyTemplate.cpp”  
#endif //MYTEMPLATE_H_

Do not add MyTemplate.cpp to project in your environment and do not

include it in the command to compile
g++ -o my_program main.cpp
NOT g++ -o my_program MyTemplate.cpp main.cpp

31

IMPORTANT

Make sure you understand
and don’t have problems
with multi-file compilation
using templates

Alternatively

Entire class template with implementation in header

Only MyTemplate.hpp

We will stick with the previous strategy as per your
textbook

32

Lecture Activity
template<class T> // this is a template definition  
class MyTemplate  
{  
 MyTemplate();  

void setData(T some_data); //mutator  
T getData() const; //accessor  

 
private:  

T my_data_; //this is the only private data member

};  
 
 
 
 
 
 
 
 
 

33

Lecture Activity
template<class T> // this is a template definition  
class MyTemplate  
{  
 MyTemplate();  

void setData(T some_data); //mutator  
T getData() const; //accessor  

 
private:  

T my_data_; //this is the only private data member

};

Write a main() function that instantiates 3 different MyTemplate
objects with different types (e.g. int, string, bool) and makes
calls to their member functions and show the output. E.g:

 
 

34

Lecture Activity
template<class T> // this is a template definition  
class MyTemplate  
{  
 public:  
 MyTemplate();  

void setData(T some_data); //mutator  
T getData() const; //accessor  

 
 private:  

T my_data_; //this is the only private data member

};

Write a main() function that instantiates 3 different MyTemplate objects
with different types (e.g. int, string, bool) and makes calls to their
member functions and show the output. E.g:

 MyTemplate<double> double_object;  

double_object.setData(3.0);  
cout << double_object.getData() << endl; // outputs 3.0

35

Try It At Home

36

Write a dummy MyTemplate interface and implementation
(MyTemplate.hpp, MyTemplate.cpp)

Test it in main()
Make sure you can compile a templated class

(REMEMBER YOU DON’T COMPILE IT!!!)
YOU WILL THANK ME

Now we can define the interface for the
Bag class!!!

37

template<class T>  
class Bag  
{  
public:  

/** Gets the current number of entries in this bag.  
@return The integer number of entries currently in the bag. */ 
int getCurrentSize() const;

/** Checks whether this bag is empty.  
@return True if the bag is empty, or false  
if not. */  
bool isEmpty() const;  

/** Adds a new entry to this bag.  
@post If successful, new_entry is stored in the bag  
and the count of items in the bag has increased by 1.  
@param new_entry The object to be added as a new entry.  
@return True if addition was successful, or false if not. */ 
bool add(const T& new_entry);

/** Removes one occurrence of a given entry from this bag, if possible.  
@post If successful, an_entry has been removed from the bag  
and the count of items in the bag has decreased by 1.  
@param an_entry The entry to be removed.  
@return True if removal was successful, or false if not. */ 
bool remove(const T& an_entry);

Means: “this method will not
modify the object”

38

Means: “this method will not
modify the parameter”

/** Removes all entries from this bag.  
@post Bag contains no items, and the count of items is 0. */  
void clear();

/** Counts the number of times a given entry appears in bag.  
@param an_entry The entry to be counted.  
@return The number of times an_entry appears in the bag. */ 
int getFrequencyOf(const T& an_entry) const;  

/** Tests whether this bag contains a given entry.  
@param an_entry The entry to locate.  
@return True if bag contains an_entry, or false otherwise. */ 
bool contains(const T& an_entry) const;  

/** Fills a vector with all entries that are in this bag.  
@return A vector containing all the entries in the bag. */ 
std::vector<T> toVector() const;  

}; // end BagInterface
39

Recap

We designed a Bag ADT by defining the operations
on the data

We templatized it so we can store any data type

40

Next Time

Bag Implementation

41

