
Smart/Managed Pointers

(A light introduction)

1

Tiziana Ligorio

Hunter College of The City University of New York

Today’s Plan

Recap

Motivation

Managed Pointers (light)

2

Recap: Binary Search Tree

3

Structural Property:

For each node n 
n > all values in TL

n < all values in TR
 r

TR 
> r

TL

< r

search(bs_tree, item)  
{

if (bs_tree is empty) //base case  
item not found  

else if (item == root)  
return root  

else if (item < root)  
search(TL , item)  

else // item > root  
search(TR , item)  

}  

Recap: Efficiency of BST

Searching is key to most operations

Think about the structure and height of the tree

O(h)

What is the maximum height?

What is the minimum height?

4

Managed Pointers Motivation

What happens when program that dynamically
allocated memory relinquishes control in the middle
of execution because of an exception?

5

Managed Pointers Motivation

What happens when program that dynamically
allocated memory relinquishes control in the middle
of execution because of an exception?

Dynamically allocated memory never released!!!

6

Memory leak!!!

Managed Pointers Motivation

Whenever using dynamic memory allocation and
exception handling together must consider ways to
prevent memory leaks

7

8

T someFunction(const List<T>& some_list)
{ 
	 //code here that dynamically allocates memory
 T an_item;
 //code here
 an_item = some_list.getItem(n); 
	 // delete dynamically allocated memory

}

int main()
{
 List<string> my_list;
 try

{
 		 std::string some_string = someFunction(my_list);

}
catch(const std::out_of_range& problem)
{

 		 //code to handle exception here
}

 //more code here
 return 0;
}

out_of_range exception
not handled here

out_of_range exception
handled here

template<class T>
T List<T>::getItem(size_t position) const
{
 Node<T>* pos_ptr = getPointerTo(position);
 if(pos_ptr == nullptr)
 throw(std::out_of_range("getItem called with empty list or invalid position"));
 else
 return pos_ptr->getItem();

}

out_of_range exception
thrown here

Memory Leak

9

Pointers are not aware
of each other

Dynamically
allocated object

10

Bye Bye

11

Bye Bye

12

Bye Bye

13

Hey nobody loves me ;(

Forever adrift in Heap Space …

14

Hey nobody loves me ;(

Forever adrift in Heap Space …

Programmer responsible for
keeping track

Ownership

A pointer is said to own a dynamically allocated
object if it is responsible for deleting it

If any node is disconnected it is lost on heap

Nodes must be deleted before disconnecting  
from chain

If multiple pointers point to same node it can be hard
to keep track who is responsible for deleting it

15

Smart/Managed Pointer

A Light Introduction

16

17

Smart pointer:  
	 - An object  
	 - Acts like a raw pointer  
	 -Provides automatic memory management 
	 	 (at some performance cost)

m_ptr

Smart/Managed Pointer

18

Object

C++14

A non-trivial sentence but
we will leave it at that

Distinguish
from”smart”

m_ptrm_ptr

Smart pointer:  
	 - An object  
	 - Acts like a raw pointer  
	 -Provides automatic memory management 
	 	 (at some performance cost)

Smart/Managed Pointer

19

Object Object

Smart Pointer destructor
automatically invokes

destructor of object it points to

Smart/Managed Pointers

Smart pointer ownership = object’s destructor
automatically invoked when pointer goes out of scope or
set to nullptr

3 types: 
	 - shared_ptr  

- unique_ptr  
- weak_ptr

20

Shared ownership: keeps track of #
of pointers to one object. The last

one must delete object

Unique ownership: only smart
pointer allowed to point to the object

Points but does not own

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	

21

sh_ptr

Managed ObjectManager Object

Reference count: 3

sh_ptr

sh_ptr

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

22

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

23

sh_ptr sh_ptr

Manager Object

Reference count: 1

Manager Object

Reference count: 1

Dynamically allocated
Dynamically allocated

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

24

Other data

sh_ptr

Other data

sh_ptrsh_ptr sh_ptr

Manager Object

Reference count: 2

Manager Object

Reference count: 2

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

25

Other data

sh_ptr

Other data

sh_ptrsh_ptr sh_ptr

Manager Object

Reference count: 2

Manager Object

Reference count: 2

In reality it look like this

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

26

Other data

sh_ptr

Other data

sh_ptrsh_ptr sh_ptr

Manager Object

Reference count: 2

Manager Object

Reference count: 2

But this is easier to
follow

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

27

Other data

sh_ptr

Other data

sh_ptrsh_ptr sh_ptr

Manager Object

Reference count: 1

Manager Object

Reference count: 1

Pointers used to dynamically allocate
objects go out of scope

… but reference count is till 1

Object destructor not invoked

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

28

Other data

sh_ptr

Other data

sh_ptr

Manager Object

Reference count: 1

Manager Object

Reference count: 1

Forever adrift in Heap Space …

Pointers used to dynamically allocate
objects go out of scope

… but reference count is till 1

Object destructor not invoked

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

29

Other data

wk_ptr

Other data

sh_ptr sh_ptr

Manager Object

Reference count: 1

Manager Object

Reference count: 1

Use weak_ptr to avoid
cycles

wk_ptr

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

30

Other data Other data

sh_ptr sh_ptr

Manager Object

Reference count: 1

Manager Object

Reference count: 1

Use weak_ptr to avoid
cycles

Smart/Managed Pointers

shared_ptr  
	 - keep count how many references to same object 
	 - last pointer responsible for deleting object 
	 - problem with cycles

31

Other data Other data

sh_ptr sh_ptr

Manager Object

Reference count: 0

Manager Object

Reference count: 0

wk_ptr wk_ptr

Pointers used to dynamically allocate
objects go out of scope

Reference count goes to 0 and

object destructor correctly invoked

Syntax

shared_ptr

 
std::shared_ptr<Song> song_ptr1; //declaration only automatically set to nullptr 

auto song_ptr2 = std::make_shared<Song>();// equivalent to Song* ptr = new Song
 		 	 	 	 	 	 	 //but creates manager and object in single memory allocation

 // do stuff

std::cout << song_ptr2->getTitle() << std::endl;

32

Syntax

shared_ptr

std::shared_ptr<Song> song_ptr1; //declaration only automatically set to nullptr 

auto song_ptr2 = std::make_shared<Song>();// equivalent to Song* ptr = new Song()
 		 	 	 	 	 	 	 //but creates manager and object in single memory allocation

 // do stuff

std::cout << song_ptr2->getTitle() << std::endl;

song_ptr2.reset(); 
 
 
 

33

auto says: “compiler you figure out the
correct type based on what is returned by

function on rhs of =
More efficient

Do it this way

Use it just like you
would a raw pointerSet the shared_ptr to nullptr

with reset() and it will take care
of deleting the dynamic object.

Syntax

weak_ptr  

auto shared_song_ptr = std::make_shared<Song>(); 

std::weak_ptr<Song> weak_song_ptr1 = shared_song_ptr;
auto weak_song_ptr2 = weak_song_ptr1;

34

weak_ptr cannot own object, so
cannot be used to allocate a

new object — must allocate new
object through shared or unique

sh_ptr

Syntax
weak_ptr  

//cannot directly access object from weak_ptr but can obtain a  
//shared_ptr through a weak_ptr
std::shared_ptr<Song> another_shared_ptr =
weak_song_ptr1.lock();
another_shared_ptr->setTitle("my favorite song");

if(weak_song_ptr1.expired())

//the object has been deleted

35

sh_ptr
sh_ptr

Obtained with

.lock()

Returns true if object
no longer exists, false

otherwise

Smart/Managed Pointers
unique_ptr

auto song_ptr = std::make_unique<Song>();
std::unique_ptr<Song> another_song_ptr;

	 	 	 	 	 	 	 	 	 	 	 	 	 	 //declaration only automatically set to nullptr

another_song_ptr = song_ptr;

	 	 	 	 	 	 	 	 	 	 //ERROR!!! copy assignment not permitted with unique_ptr

36

uq_ptr uq_ptr

song_ptr
another_song_ptr

Error

Smart/Managed Pointers
unique_ptr

auto song_ptr = std::make_unique<Song>();
std::unique_ptr<Song> another_song_ptr;

	 	 	 	 	 	 	 	 	 	 	 	 	 	 //declaration only automatically set to nullptr

another_song_ptr = std::move(song_ptr); //CORRECT! but song_ptr is now nullptr

37

uq_ptr uq_ptr

another_song_ptr
song_ptr

Correct!

In Essence

38

void useRawPointer()
{
 Song* song_ptr = new Song();

	 song_ptr->setTitle(“My favorite song”);

	 // do stuff 
 
	 // don’t forget to delete!!!

	delete song_ptr; 
 song_ptr = nullptr;

}

void useSmartPointer()
{
 auto song_ptr = std::make_unique<Song>();

	 song_ptr->setTitle("My favorite song"); 

	 // do stuff 
	
} // Song deleted automatically here

Use it just like a
raw pointer

It will take care of deleting
the object automatically

before its own destruction

To summarize

Use smart pointers if you don’t have tight time/space
constraints

Beware of cycles when using shared pointers

39

