
Abstraction and OOP

Tiziana Ligorio

Hunter College of The City University of New York

1

Abstraction

4

Abstraction Example

5

Abstraction Example

You always use them, switch
from one to another
seamlessly and probably
don’t think too much about
how they do what they do

6

Printers

Come in all shapes and sizes

Can have different complex mechanisms 
	 	 (Laser, Laserjet, Inkjet, Dot matrix …)

Easy to use  
	 - something common to all of them - abstraction

7

What is a printer?

8

What is a printer?

A printer reproduces graphics or text
on paper 

 

9

What is a printer?

A printer reproduces graphics or text
on paper 

Separate functionality from implementation  
(i.e. what can be done from how it’s actually done)

10

Wall of Abstraction

Painstaking work to
design technology
and implement
printers

Press button  
Or  
Send print job from
application

Information barrier between device (program) use and how it works

Design and
 implementation

Usage

11

Abstractions are imprecise

A printer reproduces graphics or text on paper

Wall of abstraction between implementer and client

How does client know how to use it?

 
 

12

Abstractions are imprecise

A printer reproduces graphics or text on paper

Wall of abstraction between implementer and client

How does client know how to use it?

Provide an interface (what the user needs to interact) 
	 In Software Engineering typically a set of
attributes 	(data or properties) and a set of actions

13

Lecture Activity

Design a Printer Interface

Attributes (data): 
	 	

Actions (operations): 
	 	

 
	 	

Designing the interface:

think about what the user needs

to do / know about

14

Interface for Printer

Attributes (data): 
	 	 Ink level 
	 	 Paper level 
	 	 Error codes 
	 	 	

Actions (operations): 
	 	 Print 
	 	 Rotate (landscape/portrait) 
	 	 Color / Black & White 
	 	

How this is done

is irrelevant to
the client

15

Information Hiding

Interface —> client doesn’t have to know about the
inner workings

Actually client shouldn’t know of or have access to
implementation details

It is dangerous to allow clients to bypass interface 
	

In this course

it always means software

Safe Programming

16

Reasons for Information Hiding

Harmful for client to tamper with someone else’s
implementation (code)

- Voluntarily/involuntarily break it - misuse it

- Reduces flexibility and modifiability by locking
implementation in place

- Increases number of interactions between modules

17

Object Oriented  
Design

18

What do you know

What is a class?

What is an object?

19

Principles of Object Oriented
Programming (OOP)

Encapsulation 
	 Objects combine data and operations

Information Hiding 
	 Objects hide inner details

Inheritance 
	 Objects inherit properties from other objects

Polymorphism 
	 Objects determine appropriate operations at execution

20

Principles of Object Oriented
Programming (OOP)

Encapsulation 
	 Objects combine data and operations

Information Hiding 
	 Objects hide inner details

Inheritance 
	 Objects inherit properties from other objects

Polymorphism 
	 Objects determine appropriate operations at execution

Coming soon

21

Object-Oriented Solution

Use classes of objects 
	 Combine attributes and actions 
	 	 data members + member functions (methods)

Create a good set of modules 
	 Self contained unit of code

22

Encapsulation

23

24

Class

class SomeClass  
{  

access_specifier // can be private, public or
protected

data_members // variables used in class

member_functions // methods to access data members

}; // end SomeClass

25

Class

Language mechanism for

	 Encoding abstraction

	 Enforce encapsulation

	 Separate interface from implementation

A user-defied data type that bundles together data
and operations on the data

26

You have already been
working with classes.

Which ones?

Information Hiding

27

Class

class SomeClass  
{  

public:  
// public data members and member functions go here

private:  
// private data members and member functions go here

}; // end SomeClass

Access specifier

Access specifier

Information
Hiding

28

29

30

Your program:

std::string s = “aa”;
std::string s2 = “bb”;

std::string

s.append(s2);

“aabb”

#ifndef SOME_CLASS_HPP_  
#define SOME_CLASS_HPP_  
 
#include <somelibrary>  
#include “AnotherClass.hpp”  
 
 
class SomeClass  
{  
 
public:  

SomeClass(); //Constructor  
int methodOne();  
bool methodTwo();  
bool methodThree(int

someParameter);  
 

 
private:  

int data_member_one_;  
bool data_member_two_;

}; //end SomeClass  
 
#endif

#include “SomeClass.hpp”  
 
SomeClass::SomeClass()  
{  

//implementation here  
}

int SomeClass::methodOne()  
{  

//implementation here  
}

bool SomeClass::methodTwo()  
{  

//implementation here  
}

bool SomeClass::methodThree(int

someParameter)  
{  

//implementation here  
}

SomeClass.hpp
(same as SomeClass.h)

SomeClass.cpp

Interface Implementation

31

Include Guards:
Tells linker “include only if it has not been
included already by some other module”

#ifndef SOME_CLASS_HPP_  
#define SOME_CLASS_HPP_  
 
#include <somelibrary>  
#include “AnotherClass.hpp”  
 
 
class SomeClass  
{  
 
public:  

SomeClass(); //Constructor  
int methodOne();  
bool methodTwo();  
bool methodThree(int

someParameter);  
 

 
private:  

int data_member_one_;  
bool data_member_two_;

}; //end SomeClass  
 
#endif

#include “SomeClass.hpp”  
 
SomeClass::SomeClass()  
{  

//implementation here  
}

int SomeClass::methodOne()  
{  

//implementation here  
}

bool SomeClass::methodTwo()  
{  

//implementation here  
}

bool SomeClass::methodThree(int

someParameter)  
{  

//implementation here  
}

SomeClass.hpp
(same as SomeClass.h)

SomeClass.cpp

Interface Implementation

32

Separate Compilation
Include A.hpp Include B.hpp Include C.hpp main

33

g++ -o my_program —std=c++17 A.cpp B.cpp C.cpp main.cpp

Name of
executable

Both Compile
and Link

A.o B.o C.o main.o

Compile and Link

separately with g++

g++ -c A.cpp B.cpp C.cpp main.cpp  
 
will generate

A.o B.o C.o main.o

Then

g++ -o my_program A.o B.o C.o main.o

Will link the object files into a single executable named my_program

34

Makefile
Makefile is a way of automating software building and
managing dependencies

Makefile defines a set of rules and instructions, it is read by
the make utility

make utility determines which pieces of the program need to
be recompiled

We will provide a Makefile with each project

You need to understand the Makefile, in order to modify it
as needed (see Resources on Blackboard)

35

https://bbhosted.cuny.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_70200676_1&course_id=_2167014_1&mode=reset

Class Recap
Access specifiers: determines what data or methods are public, private or
protected (more on protected later)

Data members: the attributes/data

Member functions: the operations/actions available on the data 
	 - Mutator functions (set): modify data members 
 e.g. void setName(const string& name)

	 - Accessor functions (get): retrieve the value of data members 
	 	 Use const to enforce/indicate it will not modify the object 
	 	 e.g. string getName() const;

- Constructor(s)

- Destructor
Take care of what happens when

object goes in/out of scope

36

Pass reference but
can’t modify it

Doesn’t
modify data

member

Class / Object

A class is a user-defined data type that bundles together
data and operations on the data

Class: type (like int)

Object: instantiation of the class (like x - as in int x)

Just like variables, objects have a scope

- they are born (instantiated/constructed)

- they are killed (deallocated/destroyed)

37

Object instantiation and usage

#include “SomeClass.h”  
 
 
int main()  
{  
 
 

SomeClass new_object; /instantiation of SomeClass calls constructor

int my_int_variable = new_object.methodOne(); 
bool my_bool_variable{new_object.methodTwo()};  
 

 
return 0;  

} //end main  

object dot method
calls the member function for this object

38

Constructor is
called here

Both initialize the
object. We will use

modern Braced
Initialization

Constructorsclass SomeClass  
{  

public:  
SomeClass(); //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

DECLARATION / INTERFACE:

Default Constructor automatically supplied by
compiler if no constructors are provided. Primitive
types are initialized to 0

If only Parameterized Constructor is provided,
compiler WILL NOT supply a Default Constructor
and class MUST be initialized with parameters

39

Executed when object is declared.
Initializes member variables and does whatever

else may be required at instantiation

Constructorsclass SomeClass  
{  

public:  
SomeClass(); //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

IMPLEMENTATION:

SomeClass::SomeClass()  
{  
}// end default constructor

OR: SomeClass::SomeClass():  
member_var1_{initial value},  
member_var2_{initial value}  
{  
}// end default constructor

SomeClass::SomeClass(type parameter_1, type parameter_2):  
member_var1{parameter_1}, member_var2{parameter_2}  
{  
}//end parameterized constructor Member Initializer List40

DECLARATION / INTERFACE:

Constructorsclass SomeClass  
{  

public:  
SomeClass() = default; //default constructor  
SomeClass(parameter_list); //parameterized constructor  
// public data members and member functions go here

private:  
// private members go here

};// end SomeClass

IMPLEMENTATION:

SomeClass::SomeClass(type parameter_1, type parameter_2):  
member_var1{parameter_1}, member_var2{parameter_2}  
{  
}//end parameterized constructor 41

DECLARATION / INTERFACE:

C++ 11

Tells compiler to provide
default constructor!

Destructor

class SomeClass  
{  

public:  
SomeClass();  
SomeClass(parameter_list);//parameterized constructor  
// public data members and member functions go here 
~SomeClass(); // destructor

private:  
// private data members and member functions go here

};// end SomeClass

Default Destructors automatically supplied by
compiler if not provided.

Must provide Destructor to free-up memory
when SomeClass performs dynamic memory
allocation

42

Executed when object goes
out of scope or explicitly

deleted to release memory

Implement the Printer Interface

class Printer  
{  

access_specifier // can be private, public or
protected

data_members // variables used in class

member_functions // methods to access data
members

}; // end Printer

43

Interface as Operation Contract

Documents use and limitations of a class and its
methods

Function Prototype and Comments MUST specify: 
	 - Data flow  
	 	 Input => parameters 
	 	 Output => return 
	 - Pre and Post Conditions

44

Operation Contract

/** sorts an array into ascending order  
// @pre 1 <= number_of_elements <= MAX_ARRAY_SIZE  
// @post an_array[0] <= an_array[1] <= ...  
// <= an_array[number_of_elements-1];  
// number_of_elements is unchanged  
// @param an_array of values to be sorted  
// @param number_of_elements contained in an_array  
// @return true if an_array is sorted, false otherwise  
*/  
bool sort(const int& an_array[], int number_of_elements);  

45

Function prototype

Comment Preamble

More principles of Software
Engineering

46

Unusual Conditions

Values out of bound, null pointer, inexistent file…

How to address them (strive for fail-safe programming):

State it as precondition

Return value that signals a problem 
	 	 Typically a boolean to indicate success or failure

Throw an exception (later in semester) 

47

Solution guidelines

Many possible designs/solutions

Often no clear best solution

“Better” solution principles: 
	 	 High cohesion 
	 	 Loose Coupling

48

Cohesion

Performs one well-defined task

Well named => self documenting  
	 	 e.g. sort() 

Easy to reuse 
Easy to maintain 
Robust (less likely to be affected by change)

SORT ONLY!!!

E.g. If you want to output,
do that in another function

49

Coupling

Measure of dependence (interactions) among
modules 
	 	 i.e. share data or call each other’s methods

Minimize but cannot eliminate 
	 	 Objects must collaborate!!!
 Minimize complexity

50

Reduce Coupling

Methods should only call other methods:

- defined within same class

- of argument objects

- of objects created within the method

- of objects that are data members of the class

51

Control Interaction

Pass-by-value

bool my_method(int some_int);

Pass-by-reference if need to modify object

bool my_method(ObjectType& some_object);

Pass-by-constant-reference if function doesn’t modify
object

bool my_method(const ObjectType& some_object);

52

Modifiability

No global variables EVER!!!

Named Constants

const int NUMBER_OF_MAJORS = 160;

int scores [NUMBER_OF_MAJORS];  
for(index = 0 through NUMBER_OF_MAJORS - 1)  
	 	 Process

53

Modifiability

54

Readability
Write self-commenting code

Important to strike balance btw readable code and comments

- don’t write the obvious in comments

x += m * v1; //multiply m by v1 and add result to x

Use descriptive names for variables and methods

55

BAD!!!

/**@return: the average of values in scores*/
double getAverage(double* scores, int size)
{

double total = 0;

for (int i = 0; i < size; i++)
{

total += scores[i];
}

return (total / (double)size);
}

Naming Conventions

string my_variable;

or

string myVariable;

Classes ALWAYS

start with capital
MyClass

56

In this course I will strive for:

class MyClass

MyClass class_instance;

string my_variable;

string my_member_variable_;

void myMethod();

int MY_CONSTANT;

https://google.github.io/styleguide/cppguide.html

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments

Be consistent!!!

language
dependent

https://google.github.io/styleguide/cppguide.html
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-comments

Recap

Abstraction

OOP

Project 1

58

Next Time

Inheritance

59

