
Trees

1

Tiziana Ligorio

Hunter College of The City University of New York

Today’s Plan

Trees

Binary Tree ADT

2

Announcements

3

ADT Operations

we have seen so far

Bag, List, Stack, Queue

Add data to collection 
Remove data from collection 
Retrieve data from collection 
 
Stack and Queue always position based

Bag, retrieval always value based (there are no positions)

List has both.

For all of them, data organization is linear

4

5

Tree
Non-linear structure

A special type of graph

Can represent relationships

Hierarchical (directional) organization

(E.g. family tree)

6

7

What can you tell me
about this tree?

8

Node
Edge

9

Node

Child

Parent

Siblings

Ancestor

Descendant

Edge

10

Node

Child

Parent

Siblings Leaf

Root

Ancestor

Descendant

Edge

Subtree

11

Node

Child

Parent

Siblings Leaf

Root

Ancestor

Descendant

Edge

Subtree

How many leaves in
this tree?

Subtree: the subtree rooted at node n is the tree
formed by taking n as the root node and including all
its descendants.

Path: a sequence of nodes c1, c2, ..., ck where ci+1 is a
child of ci.

Height: the number of nodes in the longest path
from the root to a leaf.

12

13

Node

Child

Parent

Siblings Leaf

Root

Ancestor

Descendant

Edge

Subtree

Path

Height = 4

Different shapes/structures

14

Both n = 16
Both 11 leaves
Different height

We have already seen Trees!

Mostly as a “thinking tool”

	 - Decision Trees

	 - Divide and Conquer

15

Binary Tree ADT

16

BinaryTree

17

Each node has at
most 2 children

BinaryTree

18

Each node has at
most 2 children

Left Child Right Child

Left
Subtree

Right
Subtree

Different shapes/structures

19

Both h = 3 and one leaf
But different

Binary Tree Applications

20

Algebraic Expressions

21

* +

+ 3 *

3 4

(3 + 4) * 5

5

3 + 4 * 5

4 5

Decision Tree

22

Is it a mammal?

Does it have stripes? Does it fly?

Is it carnivore? It’s a pig It’s an eagle It’s an ostrich

It’s a tiger It’s a zebra

Yes

Yes

Yes

Yes

No

NoNo

No

Huffman Tree

Huffman Encoding Compression Algorithm (Huffman Encoding): 
“In 1951, David A. Huffman for his MIT Information Theory class term
paper hit upon the idea of using a frequency-sorted binary tree and
quickly proved this method the most efficient.”

IDEA: Encode symbols into a sequence of bits s.t. most frequent
symbols have shortest encoding

Not encryption but compression => use shortest code for most
frequent symbols

No codeword is prefix to another codeword (i.e. if a symbol is
encoded as 00 no other codeword can start with 00)

23

https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Binary_tree

Huffman Tree

24

50% 20% 20% 5% 3% 2%

Huffman Tree

25

50% 20% 20% 5%

3% 2%

5%

Huffman Tree

26

50% 20% 20%

3% 2%

5%

10%

5%

Huffman Tree

27

50% 20%

3% 2%

5%

10%

5%

30%

20%

Huffman Tree

28

50%

20%

3% 2%

5%

10%

5%

30%

20%

50%

Huffman Tree

29

50%

20%

3% 2%

5%

10%

5%

30%

20%

50%

100%

Huffman Tree

30

50%

20%

3% 2%

5%

10%

5%

30%

20%

50%

100%
0

0

0

0

0

1

1

1

1

1

Huffman Tree

31

50%

20%

3% 2%

5%

10%

5%

30%

20%

50%

100%
0

0

0

0

0

1

1

1

1

1

0

100
11

1010
10110
10111

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes

Label each tree with its height and number of leaves.

32

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes

Label each tree with its height and number of leaves.

How many did you draw?

What’s the maximum/minimum height?

What’s the maximum/minimum number of leaves?

33

Lecture Activity

Think about structure!

Draw ALL POSSIBLE binary trees with 4 nodes

Label each tree with its height and number of leaves.

How many did you draw?

What’s the maximum/minimum height?

What’s the maximum/minimum number of leaves?

34

14

max = 4, min = 3

max = 2, min = 1

35

Tree Structure

36

A

C

D E F G

B C

D E

G

A

E

B

D

C

F

G

E

B

D

C

F

G

B

A

F

A

h = 3 h = 5 h = 7 h = 7

Structure definitions may vary across
different sources.

The following comes from your textbook and
will be used in this course and on exams

37

Tree Structure

38

A

C

D E F G

B C

D E

G

A

E

B

D

C

F

G

E

B

D

C

F

G

B

A

F

A

h = 3 h = 5 h = 7 h = 7

What is the maximum (minimum)
height of a tree with 7 nodes?

Tree Structure

39

A

C

D E F G

B C

D E

G

A

E

B

D

C

F

G

E

B

D

C

F

G

B

A

F

A

h = 3 h = 5 h = 7 h = 7

WE WILL LOOK AT THE
GENERAL ANSWER NEXT

Full Binary Tree

40

Every node that is not a leaf
has exactly 2 children

Every node has left and right
subtrees of same height

All leaves are at same level h

Complete Binary Tree

41

A tree that is full up to level
h-1, with level h filled in from

left to right

All nodes at levels h-2 and
above have exactly 2 children

When a node at level h-1 has
children, all nodes to its left

have exactly 2 children

When a node at level h-1 has
one child, it is a left child

(Height) Balanced Binary Tree

42

For any node, its left and right
subtrees differ in height by no

more than 1

All paths from root of subtrees to
leaf differ in length by at most 1

43

BalancedUnbalanced

Maximum Height

44

n nodes

every node 1 child

h = n

Essentially a chain

Minimum Height

45

Binary tree of height h can have up to n = 2h - 1

For example for h = 3, 1 + 2 + 4 = 7 = 23 - 1

h = log2 (n+1) for a full binary tree

For example:
1,000 nodes h ≈ 10 (1,000 ≈ 210)
1,000,000 nodes h ≈ 20 (106 ≈ 220)

Minimum Height

46

Binary tree of height h can have up to n = 2h - 1

For example for h = 3, 1 + 2 + 4 = 7 = 23 - 1

h = log2 (n+1) for a full binary tree

For example:
1,000 nodes h ≈ 10 (1,000 ≈ 210)
1,000,000 nodes h ≈ 20 (106 ≈ 220)

Important when we
will be looking for

things in trees given
some order!!!

Recall analysis of

Divide and Conquer

algorithms

47

. . .

1 = 21 -11
h Total n

3 = 22 -12

7 = 23 -13

15 = 24 -14

n @ level
1 = 20

2 = 21

4 = 22

8 = 23

2h -1h 2h-1

In a full tree:

Binary Tree Traversals

48

49

r

TRTL

Visit (retrieve, print, modify …) every node in the tree

Essentially visit the root as well as it’s subtrees

 
Order matters!!!

50

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder:

51

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60

52

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20

53

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10

54

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10

55

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10

56

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40

57

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30

58

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30

59

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30

60

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50

61

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50

62

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50

63

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50, 70

64

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50, 70

65

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Preorder Traversal:

if (T is not empty) //implicit base case  
{  

visit the root r  
traverse TL  
traverse TR  

}  

10 40

5030

7020

60

Preorder: 60, 20, 10, 40, 30, 50, 70

66

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Inorder Traversal:

if (T is not empty) //implicit base case  
{  

traverse TL  
visit the root r  
traverse TR  

}  

10 40

5030

7020

60

Inorder: ???

67

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Inorder Traversal:

if (T is not empty) //implicit base case  
{  

traverse TL  
visit the root r  
traverse TR  

}  

10 40

5030

7020

60

Inorder: 10, 20, 30, 40, 50, 60, 70

68

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Postorder Traversal:

if (T is not empty) //implicit base case  
{  

traverse TL  
traverse TR  
visit the root r  

}  

10 40

5030

7020

60

Postorder: ???

69

r

TRTL

Visit (retrieve, print, modify …) every node in the tree 
Postorder Traversal:

if (T is not empty) //implicit base case  
{  

traverse TL  
traverse TR  
visit the root r  

}  

10 40

5030

7020

60

Postorder: 10, 30, 50, 40, 20, 70, 60

BinaryTree ADT Operations

70

?

?

? ?

?

?

??

?

?

?

?

?

#ifndef BinaryTree_H_  
#define BinaryTree_H_  
 
template<class T>  
class BinaryTree  
{  
 
public:  

BinaryTree(); // constructor  
BinaryTree(const BinaryTree<T>& tree); // copy constructor  
~BinaryTree(); // destructor  
bool isEmpty() const;  
size_t getHeight() const;  
size_t getNumberOfNodes() const;  
void add(const T& new_item);  
void remove(const T& new_item);  
T find(const T& item) const;  
void clear();  

 
void preorderTraverse(Visitor<T>& visit) const;  
void inorderTraverse(Visitor<T>& visit) const;  
void postorderTraverse(Visitor<T>& visit) const;  

 
BinaryTree& operator= (const BinaryTree<T>& rhs);  

 
private: // implementation details here  

 
}; // end BST

#include "BinaryTree.cpp"  
#endif // BinaryTree_H_

71

#ifndef BinaryTree_H_  
#define BinaryTree_H_  
 
template<class T>  
class BinaryTree  
{  
 
public:  

BinaryTree(); // constructor  
BinaryTree(const BinaryTree<T>& tree); // copy constructor  
~BinaryTree(); // destructor  
bool isEmpty() const;  
size_t getHeight() const;  
size_t getNumberOfNodes() const;  
void add(const T& new_item);  
void remove(const T& new_item);  
T find(const T& item) const;  
void clear();  

 
void preorderTraverse(Visitor<T>& visit) const;  
void inorderTraverse(Visitor<T>& visit) const;  
void postorderTraverse(Visitor<T>& visit) const;  

 
BinaryTree& operator= (const BinaryTree<T>& rhs);  

 
private: // implementation details here  

 
}; // end BST

#include "BinaryTree.cpp"  
#endif // BinaryTree_H_

72

How might you add

Will determine the tree structure

This is an abstract class from which
we can derive desired behavior
keeping the traversal general

