Recursion

7 P v
L b K_) L
M. T .

o’ 4 -
. g SN » b 2) hg
: RS

Tiziana Ligorio
Hunter College of The City University of New York

Today'’s Plan

Announcements

Recursion

What do these images have in common

'3

| 2y &

' B v S5 O,
™y £ .e'e.
. 68 A A L6 A5 4 &

- £

L *

| _—— |

= »

.

They contain a SMALLER copy of THEMSELVES

¥.

-
\ J
L l' . '\
e vvv
. A A A A

A2

55
.....

Print String Backwards

Print String Backwards

11

ello”

Procedure:

If there are characters to print
Print the last character and reverse the rest

N\

Recursive Call
Notice it’s the last thing it does

Print String Backwards

Hello

Active functions

.

Program Stack

Print String Backwards

Hello

—» Hell

Active functions

X

Program Stack

Hello

—p Hell
o |

Print String Backwards

Active functions

X

Program Stack

10

Hello

—p Hell
o |

— Hel

Print String Backwards

Active functions

i“ Hel
Hell
Hello

Program Stack

11

Print String Backwards

Hello

—p Hell

o | Active functions

\i‘: Hel
Hell
—> Hel Hello

o]

Program Stack

12

Print String Backwards

Hello

—p Hell
o | Active functions —p [[=

e N

oll
Program Stack

13

Print String Backwards

Hello

—p Hell
o | Active functions —p |l [-

BT

oll
Program Stack

olle

14

Hello

—p Hell
o |

— Hel
o |

'

'

Print String Backwards

Active functions 4 He

S

Program Stack

He
olle

15

Hello

—p Hell

O |

—>

'

Hel
o |

Print String Backwards

Active functions 4 He

S

Program Stack

He
olle

olleH

16

Hello

—p Hell
o |

— Hel
o |

'

'

Print String Backwards

Active functions

Program Stack

He
olle
H

olleH BASE CASE

17

Hello

—p Hell

O |

—>

'

Hel
o |

Print String Backwards

Active functions 4 He

S

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions —p [¥ S

S

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions —p [¥ /3

S

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

QA Hel
Hell
Hello

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

QA Hel
Hell
Hello

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

X

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

X

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

.

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Active functions

.

Program Stack

He
olle

olleH

Hello

—p Hell
o |

— Hel
o |

'

Print String Backwards

Program Stack

He
olle

olleH

It | hand you a printed dictionary (an actual book) and
ask you to find the word “Kalimba”, what do you do?

28

Look in ?

29

LOOK FOR WORD “Kalimba” IN DICTIONARY

- Open dictionary at random page
_ It "Kalimba” is on page FOUND!!!

- Else it “Kalimba” is lexicographically < first word on

page
LOOK FOR WORD “Kalimba” IN LOWER HALF <=

Recursive Call

- Else if "Kalimba” is lexicographically > last word on page
LOOK FOR WORD “Kalimba” IN UPPER HALF <=

Recursive Call

30

How is this different from recursive solution to print

nackwards?

31

How is this different from recursive solution to print

nackwards?
- Two recursive calls
- Execute either one or the other

- Cuts problem in 1/2

32

Different Flavors of Recursion

Reverse String: write first character, reverse the

remaining single smaller string
Dictionary: either inspect upper-halt or lower-halt

Solve a problem by breaking it up into one or
more smaller “similar” problems

33

Recursive Problem-Solving

1f(problem 1s sufficiently simple)/{

directly solve the problem
i.e. do something and/or return the solution

} else{

split problem up into one or more smaller
problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution 1f necessary

34

Recursive Problem-Solving

1f(problem 1s sufficiently simple)/{

directly solve the problem
i.e. do something and/or return the solution

} else{

split problem up into one or more smaller
problems with the same structure as the original

solve some or all of those smaller problems

do something or combine results to return
solution 1f necessary

35

Why Recursion

An alternative to iteration

Not always practical (some compilers optimize tail-
recursive algorithms)

Elegant and intuitive solution for some problems

36

Factorial

1Tx2x3X...Xn

n
nl= I Ik
k=1
For example:
=1,11=1, 21=2,31=6,4!=24,5'=120

The empty product

37

But what if we start from n”?

But what if we start from n”?

nN=nxn-NxMnN-2)xn-3)x...2x1T
What is this?

39

But what if we start from n”?

nN=nxn-NxMnN-2)xn-3)x...2x1T
(n-1)!

40

But what if we start from n”?

nN=nxn-NxMnN-2)xn-3)x...2x1T
(n-1)!
(N-1)!'=Nn-1)xNn-2)x(n-3)x...2x1

What is this?

41

But what if we start from n”?

nN=nxn-NxMnN-2)xn-3)x...2x1T
(n-1)!

(N-1)!'=Nn-1)xNn-2)x(n-3)x...2x1
(n-2)!

42

Recursion that Returns a Value

nl = n x(n-1)!

\ \

Same function being called within solution

43

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.
@pre: n must be greater than or equal to 0.
@post: None.

@return: The factorial of n; n is unchanged. */
int factorial(int n)

{
1f (n == 0)
return 1;
else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
return n * factorial(n - 1); // n * (n-1)! is n!
} // end fact

44

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.

@pre: n must be greater than or equal to 0.
@post: None.

@return: The factorial of n; n is unchanged. */
int factorial(int n)

{
1f (n == 0) BASE CASE
return 1;

else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
return n * factorial(n - 1); // n * (n-1)! is n!
} // end fact

45

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.
@pre: n must be greater than or equal to 0.
@post: None.

@return: The factorial of n; n is unchanged. */
int factorial(int n)

{
i n = o
return 1;
else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
return n * factorial(n - 1); // n * (n-1)! is n!

} // end fact \

46

Recursion that Returns a Value

n! = n x (n-1)!

/** Computes the factorial of the nonnegative integer n.
@pre: n must be greater than or equal to 0.
@post: None.

@return: The factorial of n; n is unchanged. */
int factorial(int n)

{
1f (n == 0) BASE CASE
return 1;

else // n > 0, so n-1 >= 0. Thus, fact(n-1) returns (n-1)!
return n * factorial(n - 1); // n * (n-1)! is n!
} // end fact

WILL LEAD TO
BASE CASE

47

cout << fact(3);

O

return 3*fact(2)
3%2 |

return 2*fact(l)
2% |

return 1*fact(0)
1%1 |

return 1

Types of Recursion

Reverse String:
- single recursive call
- Base case: stop => no return value

Dictionary:
- split problem into halves but solve only 1
- Base case: stop => no return value

Factorial:

- single recursive call

- Base case: return a value for computation in each recursive
call

49

Why/When use recursion

Usually less efficient than iterative counterparts (we will see
example later in the course)

Inherent overhead associated with function calls
Repeated recursive calls with same parameters

Compilers can optimize tail-recursive (recursive call is the last
statement in the function) functions to be iterative

Sometimes logic of iterative solution can be very complex in
comparison to recursive solution

50

Recursive Backtracking

The Eight Queens Problem

Place 8 Queens on the
board s.t. no queen is on
the same row, column or

diaaonal

IIIIIIII
EEERNEEEE
EEEEENEE
EENNEEEEE

52

The Eight Queens Problem

(a) The first queen in
column 1

53

The Eight Queens Problem

(b) The second queen in
column 2

54

The Eight Queens Problem

HOOO0000

olelo] | [of |
OROOCO00

(¢) The third queen In
column 3

55

The Eight Queens Problem

(d) The fourth queen In
column 4

56

The Eight Queens Problem

COCORAO0n
COROO000

(e) The five queens
can attack all of column 6

The Eight Queens Problem

Backtracking!

Slolojo|]ef |
QORA0O005
OQ0Q0OAan
Q00000 n
IIIIIIII

(f) Backtracking to colun
5 to try another square
for the queen

The Eight Queens Problem

Backtracking!

(g) Backtracking to column 4
to try another square for
the queen

The Eight Queens Problem

ole|sle|e|ef |
QOOROCO0
SO000000

(h) Considering column
5 again

The Eight Queens Problem

How can we express this problem recursively?

61

The Eight Queens Problem

How can we express this problem recursively?

Place queen on column i
Recursively solve on
columns (i+1) to 8

(a) The first queen in
column 1

62

The Eight Queens Problem

How do we backtrack?

63

The Eight Queens Problem

How do we backtrack?

Communicate to calling
function that there are no
options left, it should try
something else! (e) The five queens

can attack all of column 6

64

The Eight Queens Problem

bool placeQueens(board, column)

ROOQOQO0O0
OOORO0Ona

{
if(column > BOARD SIZE)
return true; //Problem is solved!
else
{
while(there are safe squares in this column)
{
place queen in next safe square;
> if(placeQueens(board, column+1l)) //recursively look forward
return true; //queen safely placed
5
return false; //recursive backtracking
Y
s

65

QROOCO00
oloje|e]lle[o]e
OEORB0000n
OO0QC0an
olo/o|ele|®le]®
olojo|ejo]e|ole!

The Eight Queens Problem

bool placeQueens(board, column)

{
if(column > BOARD SIZE)

return true; //Problem is solved!

else

: oooEOoCON
while(there are safe squares in this column)
. o[o[o[5] [o[o]e

place queen in next safe square;

> if(placeQueens(board, column+1l)) //recursively look forward
return true; //queen safely placed R ,
s

return false; //recursive backtracking

) /] o
- / / e
., . / O

66

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

(674

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

70

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

"

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

2

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

73

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

4

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

75

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

76

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

7

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

/N,

78

Path Finding

Recursive Backtracking that finds a path from origin to destination.

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

/N,

79

Path Finding

Recursive Backtracking that finds a path from origin to dest

Assume cities are visited in alphabetical order.
bool findPath(map, origin, destination)

Origin = P, Destination = Z

Path Finding

findPath(map, origin, destination)
mark origin as visited in map
origin == destination
each unvisited city C reachable from origin

findPath(map, C, destination) «——— Recursive call

//recursive backtracking

}
Origin = P, Destination = Z

/N

81

Recursion and Induction

Principle of Mathematical Induction:

Suppose you want to prove that a statement P (n) about an
integer n is true for every positive integer n.

To prove that P(n) istrue foralln =1, do the following two
steps:

- Base Step: Prove that P (1) is true.

- Inductive Step: Letk = 1.Assume P (k) istrue, and prove that
P(k + 1) isalso true. \

X\

82

Recursion and Induction

//a: nonzero real number, n: nonnegative integer

power(a, n)

{
1if (n = 0)
return 1

else
return a * power(a, n — 1)

Prove by mathematical induction on n that the algorithm above is

correct. We will show P(n) is true for all n = 0, where
P(n): For all nonzero real numbers a, power(a, n) correctly computes an.

83

Recursion and Induction

Base step: If n = 0, the first step of the algorithm tells us that
power (a,0)=1.This is correct because a® = 1 for every nonzero
real number a, so P(0) is true.

Inductive step:

Let k = 0.

Inductive hypothesis: power(a, k) =ak,foralla I=0.
We must show next that power (a, k+1)=ak+l.

Since k + 1 > 0 the algorithm sets

power(a, k + 1) = a * power(a, k)

By inductive hypotheses power(a, k) = ak

sopower(a, k + 1) = a* power(a, k) =a*ak=akt

84

