
Searching

1

Tiziana Ligorio
Hunter College of The City University of New York

Today’s Plan

Midterm discussion

Searching algorithms and
their analysis

2

Searching

4

Looking for something!

In this discussion we will assume

searching for an element in a vector/array

Linear search

Most intuitive
Start at first position and keep looking until you find it

template <class Comparable>
int linearSearch(const std::vector<Comparable>& a, const Comparable& value)
{

 for (int i = 0; i < a.size(); i++)
 {
 if (a[i] == value) {
 return i;
 }
 }
 return-1;
}

5

How long does linear search take?

If you assume value is in the array and probability of
finding it at any location is uniform, on average n/2

If value is not in the array (worst case) n

Either way it’s O(n)

6

What if you know array is sorted?
Can you do better than linear search?

7

Lecture Activity

You are given a sorted array of integers.

How would you search for 115? (try to do it in fewer than
n steps: don’t search sequentially)

You can write pseudocode or succinctly explain your
algorithm

8

9

Look in ?

Binary Search

10

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

11

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

12

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

13

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

14

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

15

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

16

14 43 76 100 108 158 195 200 274 523 543 5993

template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
 int low = 0, high = v.size() - 1;

 while(low <= high)
 {
 int mid = (low + high) / 2;
 if(v[mid] < x)
 low = mid + 1; //search upper half
 else if (v[mid] > x)
 high = mid - 1; // search lower half
 else
 return mid; //found

 }
 return -1; //not found
}

17

14 43 76 100 108 158 195 200 274 523 543 5993

low high

template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
 int low = 0, high = v.size() - 1;

 while(low <= high)
 {
 int mid = (low + high) / 2;
 if(v[mid] < x)
 low = mid + 1; //search upper half
 else if (v[mid] > x)
 high = mid - 1; // search lower half
 else
 return mid; //found

 }
 return -1; //not found
}

18

14 43 76 100 108 158 195 200 274 523 543 5993

low highmid

template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
 int low = 0, high = v.size() - 1;

 while(low <= high)
 {
 int mid = (low + high) / 2;
 if(v[mid] < x)
 low = mid + 1; //search upper half
 else if (v[mid] > x)
 high = mid - 1; // search lower half
 else
 return mid; //found

 }
 return -1; //not found
}

19

14 43 76 100 108 158 195 200 274 523 543 5993

low high mid

O(?)

Binary Search

What is happening here?

20

Binary Search

What is happening here?

Size of search is cut in half at each step

21

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1

22

Simplification: assume n is
a power of 2 so it can be

evenly divided in two parts
The running time

One comparison

Search lower OR upper half

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1
 T(n/2) = T(n/4) +1

23

One comparison

Search lower OR upper half of n/2

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1
 T(n/2) = T(n/4) +1
T(n) = T(n/4) + 1 + 1

24

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1

T(n) = T(n/4) + 2
. . .

25

22 2

21
1

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1

T(n) = T(n/4) + 2
. . .
T(n) = T(n/2k) + k

26

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1

T(n) = T(n/4) + 2
. . .
T(n) = T(n/2k) + k
T(n) = T(1) + log2(n)

27n/n = 1

The number to which I
need to raise 2 to get n

And we said n = 2k

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k
T(n) = T(n/2) + 1

T(n) = T(n/4) + 2
. . .
T(n) = T(n/2k) + k
T(n) = T(1) + log2(n)

28

Binary search
is O(log(n))

Sorting

29

Rearranging a sequence into increasing
(decreasing) order!

Several approaches

Can do it in many ways

What is the best way?

Let’s find out using Big-O

30

Lecture Activity

Write pseudocode to sort an array.

31

144376 100108158 195200 274523543 5993

There are many approaches to sorting
We will look at some comparison-

based approaches here

32

Next time: Sorting

33

