

Tiziana Ligorio Hunter College of The City University of New York

Today's Plan

Midterm discussion

Searching algorithms and their analysis

Searching

Looking for something!

In this discussion we will assume searching for an element in a vector/array

Linear search

Most intuitive

}

Start at first position and keep looking until you find it

template <class Comparable>
int linearSearch(const std::vector<Comparable>& a, const Comparable& value)
{

```
for (int i = 0; i < a.size(); i++)
{
    if (a[i] == value) {
        return i;
    }
}
return-1;</pre>
```

How long does linear search take?

If you assume value is in the array and probability of finding it at any location is uniform, on average n/2

If value is not in the array (worst case) n

Either way it's O(n)

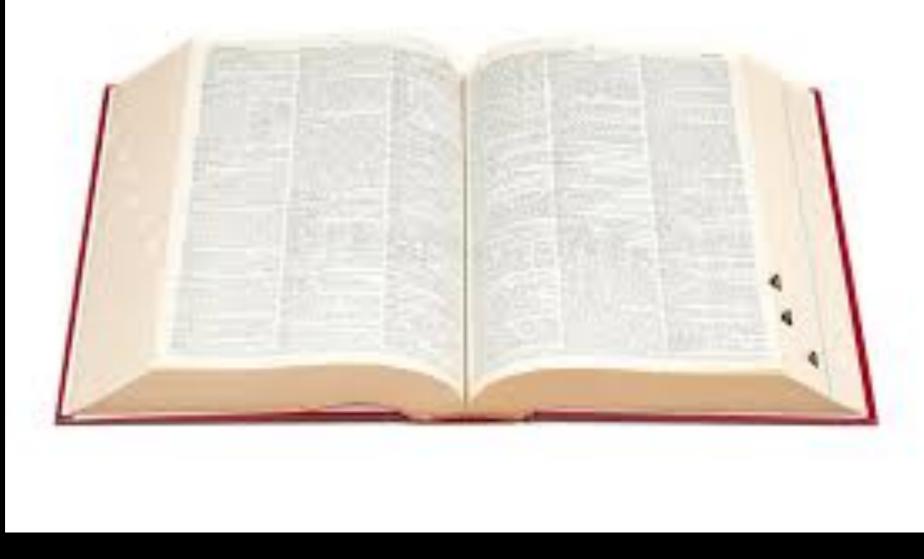
What if you know array is sorted? Can you do better than linear search?

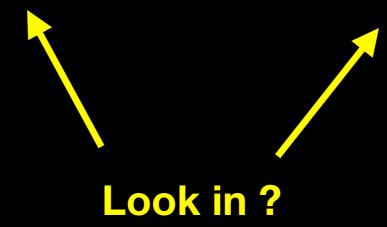
Lecture Activity

You are given a sorted array of integers.

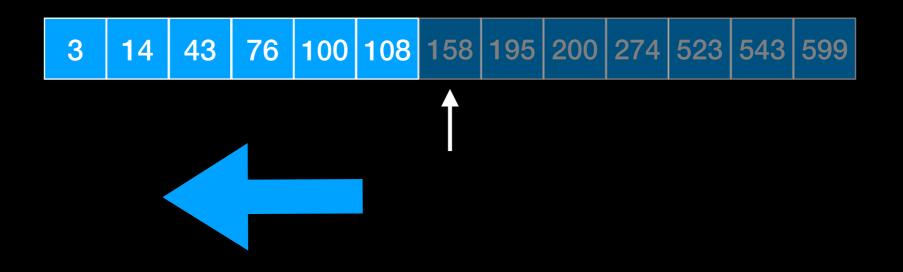
How would you search for 115? (try to do it in fewer than n steps: don't search sequentially)

You can write pseudocode or succinctly explain your algorithm



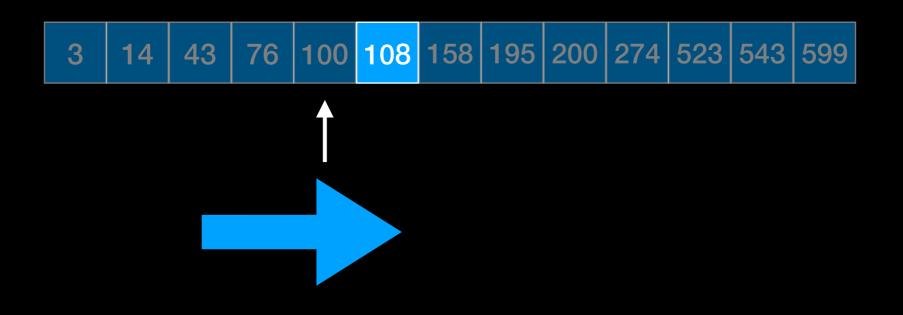


3 14 43 76 100 108 158 195 200 274 523 543 599



 3
 14
 43
 76
 100
 108
 158
 195
 200
 274
 523
 543
 599

 3
 14
 43
 76
 100
 108
 158
 195
 200
 274
 523
 543
 599



 3
 14
 43
 76
 100
 108
 158
 195
 200
 274
 523
 543
 599

```
template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
    int low = 0, high = v.size() - 1;
    while(low <= high)</pre>
    {
      int mid = (low + high) / 2;
      if(v[mid] < x)
        low = mid + 1; //search upper half
      else if (v[mid] > x)
        high = mid - 1; // search lower half
      else
        return mid; //found
    }
    return -1; //not found
}
```

3 14 43 76 100 108 158 195 200 274 523 543 599

```
template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
    int low = 0, high = v.size() - 1;
    while(low <= high)</pre>
      int mid = (low + high) / 2;
      if(v[mid] < x)
        low = mid + 1; //search upper half
      else if (v[mid] > x)
        high = mid - 1; // search lower half
      else
        return mid; //found
    }
    return -1; //not found
}
                         76 100 108 158 195 200 274 523 543 599
              3
                     43
                 14
```

mid

18

low

high

```
template <class Comparable>
int binarySearch(const std::vector<Comparable>& v, const Comparable& x)
{
    int low = 0, high = v.size() - 1;
    while(low <= high)</pre>
    {
      int mid = (low + high) / 2;
      if(v[mid] < x)
        low = mid + 1: //search upper half
      else if (v[mid] > x)
        high = mid - 1; // search lower half
      else
        return mid; //found
                                                   O(\mathbf{2})
    }
    return -1; //not found
}
                         76 100 108 158 195 200 274 523 543 599
              3
                     43
                 14
                                high mid
             low
```

What is happening here?

What is happening here?

Size of search is cut in half at each step

What is happening here?

Size of search is **cut in half** at each step

Simplification: assume n is a power of 2 so it can be evenly divided in two parts

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

One comparison

Search lower OR upper half

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1 T(n/2) = T(n/4) +1 One comparison Search lower OR upper half of n/2

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1 T(n/2) = T(n/4) + 1 T(n) = T(n/4) + 1 + 1

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1 T(n) = T(n/4) + 2 2^2 2

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

T(n) = T(n/4) + 2

 $T(n) = T(n/2^{k}) + k$

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

T(n) = T(n/4) + 2

 $T(n) = T(n/2^k) + k$ $T(n) = T(1) + log_2(n)$

n/n = 1

The number to which I need to raise 2 to get n And we said n = 2^k

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume $n = 2^k$ T(n) = T(n/2) + 1

$$T(n) = T(n/4) + 2$$

$$T(n) = T(n/2^{k}) + k$$

$$T(n) = T(1) + \log_2(n)$$

Binary search
is O(log(n))

Sorting

Rearranging a sequence into increasing (decreasing) order!

Several approaches

Can do it in many ways

What is the best way?

Let's find out using Big-O

Lecture Activity

Write **pseudocode** to sort an array.

|--|

There are many approaches to sorting We will look at some comparisonbased approaches here

Next time: Sorting