
Polymorphism

1

Tiziana Ligorio

Hunter College of The City University of New York

Today’s Plan

What have we done so
far

Inheritance Recap

Polymorphism

2

What have we done so far
• OOP

• Inheritance

• Algorithm Analysis

• ADT & Templates

• ArrayBag

•Pointers and dynamic memory allocation

• LinkedBag

• LinkedList

• DoublyLinkedList

•Exception handling

• OOP

• Polymorphism (TODAY)

3

Inheritance Recap

5

Basic Inheritance
class Printer  
{  
public:  

//Constructor, destructor  
 

void setPaperSize(const int size);  
void setOrientation(const string& orientation);  
void changeCartridge();  
void printDocument(const string& document);  

private:  
// stuff here  

}; //end Printer

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents; //Document queue  

}; //end BatchPrinter
6

class GraphicsPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void changeCartridge();  
void printDocument(const Picture& picture);  

 
private:  

//stuff here  
}; //end GraphicsPrinter

7

Basic Inheritance

 
BatchPrinter batch;  
initializePrinter(batch); //legal because batch is-a printer

Think of argument types as specifying minimum requirements

Base class
Superclass

Derived Classes
Subclasses

is-a is-a

8

void initializePrinter(Printer& p)  
{  
 //some initialization function  
}

Problem

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const string& document);  
void printAllDocuments();  

private:  
vector<string> documents; //Document queue  

}; //end BatchPrinter

We would like to print all kinds of documents not just text 
documents should be able to store different types of documents

9

Can’t store different
types of documents in

printer queue

Generalized Document

Whatever the type of document, a printer ultimately
prints a grid of pixels

Generalized Document should know how to convert
itself into a printable format 
 
We want Document to be an interface => not
concerned with implementation details

10

11

Document Document Document Document

Document::convertToPixelArray()  
printPixelArray()

printAllDocuments()

Polymorphism

12

class BatchPrinter: public Printer // inherit from printer  
{  
public:  

//Constructor, destructor  
void addDocument(const Document* document);  
void printAllDocuments();  

private:  
vector<Document*> documents; //Document queue  

}; //end BatchPrinter

13

class Document  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

//stuff here  
}; //end Document

This function has no implementation**

I’ll explain this next

**odd syntax due to historical/political reasons, explained in quote later
14

Abstract Class!

class TextDocument: public Document// inherit from Document  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const override;  
virtual int getPriority() const override;  

 
void setFont(const string& font); //text-specific formatting  
void setSize(int size);

private:  
//stuff here  

}; //end TextDocument Have implementation

15

class TextDocument: public Document

class GraphicsDocument: public Document

class PortableFormatDocument: public Document

class SpreadsheetDocument: public Document

16

But how does compiler know whose
convertToPixelArray() to call?
TextDocument::convertToPixelArray? 
GraphicsDocument::convertToPixelArray?

17

GraphicsDocument

TextDocument

TextDocument

MySpecialDocument

Where are we going?

I want to store all kinds of documents in my
BatchPrinter queue

I want to access the correct convertToPixelArray()
method specific to each different document type

18

BatchPrinter myBatchPrinter;

Document* myTextDocument = new TextDocument;  
Document* myGraphicsDocument = new GraphicsDocument;  
 
//do stuff

myBatchPrinter.addDocument(myTextDocument)  
myBatchPrinter.addDocument(myGraphicsDocument)

myBatchPrinter.printAllDocuments();  
 

myTextDocument->convertToPixelArray();  
myGraphicsDocument->convertToPixelArray();

TextDocument is-a Document
GraphicsDocument is-a Document
We can point to objects of derived class
using pointers to base class

We store in printer queue pointers to Document
but really can access any derived class document

convertToPixelArray
is marked virtual so
the appropriate function call
is determined at runtime19

main()

Late Binding via

Virtual Functions

Avoid statically binding function calls at compile time

Must declare functions as virtual for late binding

20

Polymorphism

We just saw an example of polymorphism (literally
many forms)

With virtual functions the outcome of an operation
is determined at execution time

With basic inheritance we were just saving ourselves
the trouble of re-writing code

21

Abstract Class

Pure virtual function (=0) has no implementation 

Abstract class  
	 - Has at least one pure virtual function 
	 - Cannot be instantiated because does not have 
	 implementation for some/all its member functions

Document myDocument; //Error!  
Document* myDocument = new Document;//Error!

22

Bjarne Stroustrup

“The curious =0 syntax was chosen over the obvious
alternative of introducing a new keyword pure or
abstract because at the time I saw no chance of
getting a new keyword accepted. Had I suggested
pure, Release 2.0 would have shipped without

abstract classes, I chose abstract classes. Rather than
risking delay and incurring the certain fights over

pure, I used the traditional C and C++ convention of
using 0 to represent ‘not there’ ”

23

 
 
Base base_object;  
Derived derived_object;  
 
// stuff here

base_object.someMethod(); //calls Base function  
derived_object.someMethod(); // calls Derived function - Overriding!!!  
 
 
 

Base

someMethod();
. . .

Derived: public Base

someMethod() override;
. . .

main()

24

Recap Basic Inheritance

 
 
Base* base_ptr = new Base;  
Base* derived_ptr = new Derived;  
 
// stuff here

base_ptr->someMethod(); //calls Base function  
derived_ptr->someMethod(); // ???  
 
 
 

Base

someMethod();
. . .

Derived

someMethod() override;
. . .

main()

25

Recap Polymorphism

 
 
Base* base_ptr = new Base;  
Base* derived_ptr = new Derived;  
 
// stuff here

base_ptr->someMethod(); //calls Base function  
derived_ptr->someMethod(); // call Derived function - LATE BINDING!!!!  
 
 
 

Base

virtual someMethod();
. . .

Derived

someMethod() override;
. . .

main()

26

Recap Polymorphism

class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

//stuff here  
}; //end Document

This function has no implementation**

27

Recap Abstract Class

Polymorphism without
abstraction

Superclass need not be abstract

Virtual functions in superclass need not be pure
virtual

28

Polymorphism without

Abstract Classes

class Skater  
{  
public:  

//constructor, destructor  
virtual void slowDown();  
//virtual, not pure  
 

private:  
//stuff here  

}; //end Skater

 
 
void Skater::slowDown()  
{  

applyBrakes();  
} //end slowDown

class InexperiencedSkater:
public Skater  

{  
public:  

//constructor, destructor  
virtual void slowDown() override;  

private:  
//stuff here  

}; //end InexperiencedSkater  
 
 
void InexperiencedSkater  

::slowDown()  
{  

fallDown();  
} //end slowDown

29

implementation does not
have virtual or
override keyword

Polymorphism without

Abstract Classes

Skater* firstSkater = new Skater;  
firstSkater->slowDown(); // applyBrakes()

Skater* secondSkater = new InexperiencedSkater;  
secondSkater->slowDown(); // fallDown() - LATE BINDING!

30

main()

Polymorphism without

Abstract Classes

Need not override non-pure virtual functions

class StuntSkater: public Skater  
{  
public:  

//constructor, destructor - note no mention of slowDown  
void frontFlip();  
void backFlip();  

private:  
//stuff here  

}; //end StuntSkater  
 
 
// stuff here  
 
 
Skater* stunt_skater = new StuntSkater;  
stunt_skater->slowDown(); // applyBrakes()

31

Warning

class NotVirtual  
{  
public:  

void notAVirtualFunction();  
}; //end NotVirtual

class NotVirtualDerived: public NotVirtual  
{  
public:  

void notAVirtualFunction() override;  
}; //end NotVirtualDerived  
 
 
 
NotVirtual* nv = new NotVirtualDerived;  
nv->notAVirtualFunction(); // OUCH!!! calls NotVirtual’s member  

 // instead of NotVirtualDerived’s member

When using pointers to base
class, to let derived classes
override functions in base
class must make the base
class’s function virtual

32

More design considerations

Back to Document class

Assume we realize all types of documents have
width and height data members

Makes sense to move them into base class

Don’t want client to have direct access to data
members

33

class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
private:  

int width, height; //Problem!!!  
//stuff here  

}; //end Document

34

protected Access in Base Class

class Document:  
{  
public:  

//Constructor, destructor  
virtual void convertToPixelArray() const = 0;  
virtual int getPriority() const = 0;  

 
protected:  

int width, height;  
//stuff here

private:  
//stuff here  

}; //end Document

35

Access Specifiers Base Class
members

public 
	 accessible by everyone

private 
	 accessible within class and by friends

protected 
	 accessible within class, by friends and by derived
classes

36

Access Specifiers for Inheritance

class Derived: public Base  
{  
public:  

//Stuff here  
 

 
private:  

//Stuff here

 
}; //end Derived

37

Inheritance accessibility

Access in Base Class Inheritance Method Access in Derived Class
public

public
public

protected protected
private no access

public
protected

protected
protected protected
private no access

public
private

private
protected private
private no access

We will not discuss the details of protected and private inheritance in this course

is-a

is-implemented-as

is-implemented-and
-inherited-as

38

override specifier

Explicitly tell compiler you mean to override a function

Compiler will check!

Also self-documenting

class BaseClass  
{  

virtual void f(int);  
};  
 
class DerivedClass: public BaseClass  
{  

virtual void f(float) override; //Compile-time error  
};

39

final specifier
- Prevents inheritance 
- Prevents deriving classes from overriding methods

class A  
{  

virtual void f();  
};  
 
class B : public A  
{  

void f() final override; //cannot override f()  
};  
 
class C: public B final //cannot inherit from C  
{  

void f() override; //Error, f is final!  
}

class D: public C{} //Error C is final!
40

Runtime Costs of

Virtual Functions

Function call overhead 
- C++ maintains virtual function tables that store
pointers to each 	virtual function 
- Determine which function to call at execution time
by looking-up v-table of object being pointed to

Clever! But still 
	 Slower 
	 Extra space for v-tables

Overhead ->mark individual functions virtual to
take advantage of polymorphism only when
appropriate

Fully polymorphic inheritance would be overkill in
most cases

41

42

Recap

Polymorphism -> virtual functions

Pure vs non-pure virtual functions

Polymorphism with or without abstract classes

override and final

Overhead

43

Polymorphism Recap

Base-class pointer to Derived class

Determine behavior at runtime (late binding)

HOW? virtual

WHY? store different type of (Derived) objects in
same container and retain access to each object’s
distinct behavior

44

Details

There is a lot of detail one needs to pay attention to
when using Polymorphism

The following slides are for those of you who wish to
dig a little deeper into the topic but will not be on
exams

These are marked with

45

Need to pay extra attention to destructors!!!

With Polymorphism destructor MUST always be
virtual!!!

46

class BaseClass()  
{  
public:  

BaseClass();  
~BaseClass();  

 
}; //end BaseClass  
 

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; //PROBLEM!!!

BaseClass destructor is invoked.
Need to allow late binding for destructor!!!

47

class BaseClass()  
{  
public:  

BaseClass();  
virtual ~BaseClass();  

 
}; //end BaseClass

class DerivedClass:  
public BaseClass  

{  
public:  

DerivedClass();  
~DerivedClass();  

 
private:  

char* myString;  
}; //end DerivedClass

DerivedClass::DerivedClass()  
{  

//allocate some memory  
myString = new char[128];  

}

DerivedClass::~DerivedClass()  
{  

//deallocate memory  
delete[] myString;  

}

main()

BaseClass* myClass = new DerivedClass;
delete myClass; // both destructors  
 //invoked

Problem fixed! BOTH destructors invoked

Fix

48

Virtual Functions in

Constructors and Destructors

Recall 
	 - BaseClass constructor invoked before DerivedClass’ 
	 - DerivedClass destructor invoked before BaseClass’

If virtual function in constructor/destructor is called
polymorphically could try to access uninitialized/deallocated
data

C++ prevents this by calling virtual functions in constructors/
destructors non-polymorphically

49

class BaseClass()  
{  
public:  

BaseClass()  
{  

someVirtualFunction();  
}  
virtual void someVirtualFunction()  
{  

cout << “Base” << endl;  
}  

 
}; //end BaseClass

class DerivedClass: public BaseClass  
{  
public:  

 
virtual void someVirtualFunction()  
{  

cout << “Derived” << endl;  
}  

 
}; //end DerivedClass

main()  

DerivedClass myDerivedClas;  
————————————————————————————  
 
Standard output: 
Base

50

Invoking Virtual Members

Non-Virtually

Sometimes may need to call the BaseClass version
of a virtual function from a DerivedClass

void DerivedClass::someFunction()  
{  

BaseClass::someVirtualFunction(); // no polymorphism  
//do more stuff  

}  

51

Copy Constructors and Assignment
Operators with Inheritance

Can become complicated beasts with inheritance!!!

Must always call explicitly BaseClass within
DerivedClass

52

class Base()  
{  
public:  

Base();  
Base(const Base& other);  
Base& operator=(const Base& other);  
virtual ~Base();  

 //other public and protected members here that will be inherited  
 

}; //end BaseClass

class Derived: public Base  
{  
public:  

Derived();  
Derived(const Derived& other);  
Derived& operator=(const Derived& other);  
virtual ~Derived();  

private:  
char* theString; //a C string  
//generic helper functions  
void copyOther(const Derived& other);  
void clear();  

}; //end DerivedClass
53

//generic “copy other” private member function 
void Derived::copyOther(const Derived& other)  
{  

theString = new char[strlen(other.theString)+1];  
strcpy(theString, other.theString);  

}  
 
// clear out private member function  
void Derived::clear()  
{  

delete[] theString; //deallocate memory  
theString = NULL; //avoid dangling pointer  

}

Derived Implementation

54

 
//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other);  

}  
return *this;  

}  
 

Derived Incorrect Implementation

55

 
//copy constructor  
Derived::Derived(const Derived& other)  
{  

copyOther(other); //WRONG!!!  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
copyOther(other); //WRONG!!!  

}  
return *this;  

}  
 

Derived Incorrect Implementation

56

Obj1
Base

Obj1
Derived

Obj2
Base

Obj2
Derived

Obj1
Base

Obj2
Derived

Obj2
Base

Obj2
Derived

After invoking copy constructor
or assignment operator

PROBLEM!!!

57

 
//copy constructor  
Derived::Derived(const Derived& other): Base(other) //CORRECT!!!  
{  

copyOther(other);  
}  
 
//assignment operator  
Derived& Derived::operator=(const Derived& other)  
{  

if(this != other)  
{  

clear();  
Base::operator= (other);//CORRECT!!!Invoke Base operator=

//explicitly  
copyOther(other);  

}  
return *this;  

}  
 

Derived Correct Implementation

58

Slicing
Copy ONLY BaseClass portion of object 
	 Opposite of previous case

Base* ptr1;  
Base* ptr2 = new Derived; // pointer of type Base that points to type Derived  
 
//do stuff  
 
*ptr1 = *ptr2; //copy value pointed to by ptr2 into variable pointed to by

//ptr1

Note potential problem!!! 
The above expands into  
ptr1->operator= (*ptr2); 
Invoking the operator= of the Base loosing all data of Derived
portion

59

*ptr1
Base

*ptr1
Derived

*ptr2
Base

*ptr2
Derived

*ptr2
Base

Nothing
copied
here

*ptr2
Base

*ptr2
Derived

*ptr1 = *ptr2

PROBLEM!!!

60

Slicing via Copy Constructor

void doSomething(Base baseObject)  
{  

//do something  
}  
 
Derived myDerived;  
doSomething(myDerived);

PROBLEM!!! Parameter baseObject will be
initialized using Base copy constructor

61

Slicing

Ever more insidiously!!!

vector<Base> myBaseVector;  
Base* myBasePtr = someFunction(); //pointer to Base  
//ATTENTION myBasePtr could point to Derived object  
myBaseVector.push_back(*myBasePtr);

If someFunction returns a pointer to an object of type Derived 
calling push_back on object of type Derived will likely slice the
object storing only its Base data

Possible solution: store pointers in myBaseVector instead of objects

62

Casting
Forcing one datatype to be converted into another

Up-casting (Derived to Base) automatically available
through inheritance 
Base* basePtr;  
Derived* derivedPtr;  
//do stuff  
basePtr = derivedPtr; //automatic conversion Derived is-a Base

Down-casting (Base to Derived) 
Base* basePtr = new Derived; // pointer of type Base points to
Derived  
//do stuff  
Derived* derivedPtr = (Derived*) basePtr;

63

Casting

Classic C++ cast too powerful => no checks.  
Could write something totally nonsensical

Base* basePtr;  
vector<double>* myVectorPtr = (vector<double>*) basePtr;  
//PROBLEM!! Makes no sense, BUT no compiler error 
 
 
const Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = (Derived*) basePtr;  
//PROBLEM!!! Lost constness of Base object  
//derivedPtr is now free to modify it

64

static_cast
static_cast checks at compile time that cast "makes sense”

Allows: 
	 - Converting between primitive types (e.g. int to float) 
	 - Converting pointers or references of Derived type to pointers or
references of Base type (e.g. Derived* to Base*) where target is at least
as const as the source 
	 - Converting pointers or references of Base type to pointers or
references of Derived type (e.g. Base* to Derived*) where target is at
least as const as the source

Base* basePtr = new Derived;  
// do stuff  
Derived* derivedPtr = static_cast<Derived*>(basePtr);

65

dynamic_cast

If Base* did not point to Derived object, static_cast
would succeed  
	 => runtime problems  
	 e.g. access Derived data members not present in Base

Base* basePtr = new Base;  
Derived* derivedPtr1 = (Derived*)basePtr; //BAD!!!  
Derived* derivedPtr2 = static_cast<Derived*>(basePtr); //BAD!!!  
Derived* derivedPtr3 = dynamic_cast<Derived*>(basePtr); //GOOD!!!

Will return a NULL pointer

66

Conclusion

Polymorphism is easy, Just put virtual
everywhere and the compiler will take care of the
rest!

67

Conclusion

Polymorphism is easy, Just put virtual
everywhere and the compiler will take care of the
rest!

68

Real Conclusion

Overhead! Use it only when useful/necessary

Carefully craft constructors

Always make destructor virtual

Beware of Slicing (in all its forms)

Beware of casting and use level most appropriate
and safe for your situation

69

